Non-classical q-oscillator realization of the quantum $\operatorname{SU}(2)$ algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L713
(http://iopscience.iop.org/0305-4470/25/12/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.58
The article was downloaded on 01/06/2010 at 16:38

Please note that terms and conditions apply.

LETTER TO THE EDITOR

'Non-classical' q-oscillator realization of the quantum $\mathbf{S U (2)}$ algebra

A S Zhedanov
Physics Department, Donetsk University, Donetsk 340055, Russia

Received 18 October 1991

Abstract

A new realization of $\mathrm{SU}_{q}(2)$ algebra via two independent q-oscillators is found. In contrast to the 'classical' Jordan-Schwinger construction the proposed realization yields $\mathrm{SU}_{4}(2)$ generators as linear functions of creation and annihilation q-bose operators. The functions of canonical basis $|j ; m\rangle$ in q-oscillator representation are found. There are no 'classical' analogues of this realization-it 'disappears' if $q \rightarrow 1$.

The $\mathrm{SU}_{q}(2)$ (or so-called 'quantum $\mathrm{SU}(2)$ ') algebra is assumed to play an important role in problems of quantum field theory and statistical physics (for references see [1]). This algebra is formed by three generators J_{0}, J_{+}, J_{-}, obeying the commutation relations

$$
\begin{align*}
& {\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm}} \\
& {\left[J_{+}, J_{-}\right]=\left(\sinh 2 \omega J_{0}\right) / \sinh \omega .} \tag{1}
\end{align*}
$$

In what follows we shall assume that $\omega>0$.
The Casimir operator J^{2} of $\mathrm{SU}_{q}(2)$ has the expression

$$
\begin{equation*}
\hat{J}^{2}=J_{+} J_{-}+\left(\cosh 2 \omega\left(J_{0}-1 / 2\right)\right) / 2 \sinh ^{2} \omega . \tag{2}
\end{equation*}
$$

The canonical basis of unitary finite-dimensional representation exists $\psi_{j m}$ defined by the reiations

$$
\begin{align*}
& J_{0} \psi_{j m}=m \psi_{j m} \\
& J_{-} \psi_{j m}=\sigma_{m} \psi_{j m-1} \tag{3}\\
& J_{+} \psi_{j m}=\sigma_{m+1} \psi_{j m+1} \\
& \hat{J}^{2} \psi_{j m}=\left[(\cosh \omega(2 j+1)) / 2 \sinh ^{2} \omega\right] \psi_{j m}
\end{align*}
$$

where (as for ordinary $S U(2)$ algebra)) $|m| \leqslant j, 2 j+1=1,2, \ldots$ is the dimension of the representation and

$$
\sigma_{m}^{2}=J^{2}-(\cosh \omega(2 m-1)) / 2 \sinh ^{2} \omega .
$$

There is one more important 'quantum' algebra-so-called q-oscillator algebra. The latter is constructed from the number operator A_{0} and g-bose creation-annihilation operators A_{+}, A_{-}. The commutation relations between these operators are

$$
\begin{align*}
& {\left[A_{0}, A_{ \pm}\right]= \pm A_{ \pm}} \tag{4}\\
& {\left[A_{-}, A_{+}\right]=\exp \left(-2 \omega A_{0}\right)}
\end{align*}
$$

(for $\omega=0$ we arrive at the ordinary oscillator algebra). The q-oscillator algebra (4) (as well as its various modifications) has been considered (and rediscovered) in many papers [2-6].

The Casimir operator of q-oscillator algebra is

$$
\begin{equation*}
\hat{Q}=A_{+} A_{--}+\mathrm{e}^{-2 \omega A_{0}} /\left(1-\mathrm{e}^{-2 \omega}\right) \tag{5}
\end{equation*}
$$

Writing the Casimir in the form

$$
\begin{equation*}
Q=\mathrm{e}^{-2 \omega \alpha} /\left(1-\mathrm{e}^{-2 \omega}\right) \tag{6}
\end{equation*}
$$

where α is arbitrary real parameter, one obtains the following canonical unitary representation in the basis $|n\rangle$

$$
\begin{align*}
& A_{0}|n\rangle=(\alpha+n)|n\rangle \\
& A_{-}|n\rangle=\mu_{n}|n-1\rangle \\
& A_{+}|n\rangle=\mu_{n+1}|n+1\rangle \tag{7}\\
& \hat{Q}|n\rangle=Q(\alpha)|n\rangle \\
& n=0,1,2, \ldots
\end{align*}
$$

where

$$
\begin{equation*}
\mu_{n}^{2}=\mathrm{e}^{-2 \omega \alpha}\left(1-\mathrm{e}^{-2 \omega n}\right) /\left(1-\mathrm{e}^{-2 \omega}\right) \tag{8}
\end{equation*}
$$

The representations (7), being infinite-dimensional, differ one from another by the value of the Casimir parameter α. For $\alpha=0$ we have the q-bose algebra defined by the relation $[2,3,6]$

$$
\begin{equation*}
A_{-}^{(0)} A_{+}^{(0)}-q A_{+}^{(0)} A_{-}^{(0)}=1 \tag{9}
\end{equation*}
$$

For $\alpha \neq 0$ the corresponding relation is

$$
\begin{equation*}
A_{-}^{(\alpha)} A_{+}^{(\alpha)}-q A_{+}^{(\alpha)} A_{-}^{(\alpha)}=q^{\alpha} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
q=\exp (-2 \omega) \tag{11}
\end{equation*}
$$

There are obvious relations between $A^{(0)}$ and $A^{(\alpha)}$

$$
\begin{align*}
& A_{0}^{(\alpha)}=A_{0}^{(0)}+\alpha \tag{12}\\
& A_{ \pm}^{(\alpha)}=\sqrt{q^{\alpha}} A_{ \pm}^{(0)} .
\end{align*}
$$

Because q-oscillator algebra seems to be simpler than $\mathrm{SU}_{q}(2)$, it is natural to search for possible q-oscillator realizations of $\mathrm{SU}_{q}(2)$. In $[4,5]$ the q-analogue of JordanSchwinger construction has been proposed. Let A_{0}, A_{+}, A_{-}and B_{0}, B_{+}, B_{-}be two independent (i.e. commuting) sets of q-oscillator operators both forming the representations with zero Casimir parameters $\alpha=\beta=0$. Then the operators

$$
\begin{align*}
& J_{0}=\left(A_{0}-B_{0}\right) / 2 \\
& J_{-}=A_{-} B_{+} \exp \left(\omega\left(A_{0}+B_{0}-1\right) / 2\right) \tag{13}\\
& J_{+}=A_{+} B_{-} \exp \left(\omega\left(A_{0}+B_{0}-1\right) / 2\right)
\end{align*}
$$

form a representation of $\mathrm{SU}_{q}(2)$. The dimension $2 j+1$ of this representation is defined by the value j of the operator

$$
\begin{equation*}
\hat{j}=\left(A_{0}+B_{0}\right) / 2 \tag{14}
\end{equation*}
$$

commuting with all generators J_{0}, J_{-}, J_{+}.
Formulae (13) yield the q-analogue of Jordan-Schwinger representation for $\mathrm{SU}_{q}(2)$ [4,5]. For $\omega=0$ we obtain the well-known Jordan-Schwinger realization of angular momentum via two oscillators [7].

However there exists one more q-oscillator realization of $\mathrm{SU}_{q}(2)$ having no classical analogue (i.e. it exists only for $\omega \neq 0$). Moreover, in contrast to (13), the new realization is linear on the creation-annihilation q-bose operators.

Let again $A_{0}, A_{ \pm}, B_{0}, B_{ \pm}$be independent q-oscillator operators forming the representations of algebra (4) with Casimir parameters α and β. One can easy verify that operators

$$
\begin{align*}
& J_{0}=A_{0}-B_{0} \\
& J_{-}=\left(A_{-} \exp \left(\omega B_{0}\right)-B_{+} \exp \left(\omega A_{0}\right)\right) / \sqrt{2 \sinh \omega} \tag{15}\\
& J_{+}=\left(A_{+} \exp \left(\omega B_{0}\right)-B_{-} \exp \left(\omega A_{0}\right)\right) / \sqrt{2 \sinh \omega}
\end{align*}
$$

form the $\mathrm{SU}_{q}(2)$ algebra with commutation relations (1). Note that the realization (15) does not explicitly depend on the Casimir parameters α and β. In the classical limit ($\omega \rightarrow 0$) this realization 'disappears'.

Let us find the standard eigenstates $\psi_{j m}$ (3) for the realization (15). For this it is sufficient to solve the two equations

$$
\begin{align*}
& J_{0} \psi_{j m}=m \psi_{j m} \tag{16}\\
& J^{2} \psi_{j m}=\lambda_{j} \psi_{j m} \tag{17}
\end{align*}
$$

where

$$
\begin{equation*}
\lambda_{j}=\frac{\cosh \omega(2 j+1)}{2 \sinh ^{2} \omega} \tag{18}
\end{equation*}
$$

Without loss of generality one can choose $m \geqslant 0$, so $j=m, m+1, \ldots$
The functions $\psi_{j m}$ may be represented in terms of q-oscillator eigenstates

$$
\begin{equation*}
\psi_{j m}=\sum_{n_{A}, n_{B}} W_{n_{A} n_{B}}^{j m}\left|n_{A}\right\rangle\left|n_{B}\right\rangle \tag{19}
\end{equation*}
$$

where $\left|n_{A}\right\rangle,\left|n_{B}\right\rangle$ are eigenstates for A_{0} and B_{0} :

$$
\begin{aligned}
& A_{0}\left|\tilde{n}_{A}\right\rangle=\left(\alpha+\tilde{n}_{A}\right)\left|\tilde{n}_{A}\right\rangle \\
& B_{0}\left|n_{B}\right\rangle=\left(\beta+n_{B}\right)\left|n_{B}\right\rangle .
\end{aligned}
$$

From (16) one obtains the relation

$$
\begin{equation*}
n_{A}-n_{B}+\alpha-\beta=m \tag{20}
\end{equation*}
$$

Let us choose the Casimir parameters to be

$$
\begin{equation*}
\alpha-\beta=m \tag{21}
\end{equation*}
$$

So we obtain

$$
\begin{equation*}
n_{A}=n_{B}=0,1,2 \ldots \tag{22}
\end{equation*}
$$

and expansion (19) can be rewritten in the form

$$
\begin{equation*}
\psi_{j m}=\sum_{n=0}^{\infty} W_{n}^{j m}|n\rangle|n\rangle . \tag{23}
\end{equation*}
$$

Substituting (23) into (17) one obtains the following recurrent relation for the coefficients W_{n}

$$
\begin{equation*}
a_{n+i} W_{n+1}+a_{n} W_{n-i}+b_{n} W_{n}=\lambda_{j} W_{n} \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{n}=\left(1-\mathrm{e}^{2 \omega n}\right) / 4 \sinh ^{2} \omega \\
& b_{n}=\mathrm{e}^{\omega(2 n+1)} \cosh 2 \omega m / 2 \sinh ^{2} \omega . \tag{25}
\end{align*}
$$

It is convenient to represent $W_{n}^{j m}$ in the form

$$
\begin{equation*}
W_{n}^{j m}=W_{0}^{j m} P_{n}\left(\lambda_{j} ; m\right) . \tag{26}
\end{equation*}
$$

For new functions P_{n} we have

$$
\begin{equation*}
P_{0}\left(\lambda_{j} ; m\right) \equiv 1 \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n+1} P_{n+1}+a_{n} P_{n-1}+b_{n} P_{n}=\lambda_{j} P_{n} \tag{28}
\end{equation*}
$$

It is seen from (27), (28) (and from $a_{0}=0$) that functions $P_{n}\left(\lambda_{j} ; m\right)$ are n-order polynomials of argument λ_{j}. These polynomials (together with their weight amplitude W_{0}) are uniquely determined by the three-term recurrent relation (28). To complete the calculations it is sufficient to note that coefficients a_{n} and b_{n} coincide with those defining the special class of Askey-Wilson polynomials [8]. Omitting the details of identification we represent the final result

$$
\begin{align*}
& \left(W_{0}^{j m}\right)^{2}=\exp \left(2 \omega\left(m^{2}-j^{2}\right)\right)\left(1-\mathrm{e}^{-2 \omega(2 i+1)}\right) \tag{29}\\
& P_{n}\left(\lambda_{j} ; m\right)=q^{n(m+1 / 2)} \Phi_{1}\left(\left.\begin{array}{c}
q^{-n}, q^{-x}, q^{x+2 m+1} \\
q
\end{array} \right\rvert\, q^{n+1-2 m}\right) \tag{30}
\end{align*}
$$

where

$$
\begin{aligned}
& q=\mathrm{e}^{-2 \omega} \\
& x=j-m=0,1,2, \ldots
\end{aligned}
$$

${ }_{3} \Phi_{1}$ is the so-called basic hypergeometric function defined by [8]

$$
{ }_{3} \Phi_{1}\left(\left.\begin{array}{c}
a, b, c \tag{31}\\
d
\end{array} \right\rvert\, z\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{q^{-k(k+1) / 2}(a)_{k}(b)_{k}(c)_{k} z^{k}}{(q)_{k}(d)_{k}}
$$

where $(a)_{k}=(1-a)(1-q a) \ldots\left(1-a \cdot q^{k-1}\right)$ is the Pochhammer q-symbol.
Formulae (29), (30) completely determine the coefficients $W_{n}^{j m}$ in expansion (23). So we have obtained the function $\psi_{j m}$ in the q-oscillator representation.

Note that for the lowest state $j=m$ one obtains the simple formula ('Planck distribution')

$$
\begin{equation*}
\psi_{j j}=\sqrt{1-q^{2 j+1}} \sum_{n=0}^{\infty} q^{n(j+1 / 2)}|n\rangle|n\rangle . \tag{32}
\end{equation*}
$$

It is again seen from (32) that this distribution exists only for $q \neq 1$ (formally speaking, the case $q \rightarrow 1$ corresponds to an 'infinitely increasing temperature').

Note, finally, that analogous representations exist also for the $\mathbf{S U}_{q}(1,1)$ algebra. Indeed, the operators

$$
\begin{align*}
& N_{0}=A_{0}-B_{0} \\
& N_{-}=\left(A_{-} \exp \left(-\omega B_{0}\right)-B_{+} \exp \left(-\omega A_{0}\right)\right) / \sqrt{2 \sinh \omega} \tag{33}\\
& N_{+}=\left(A_{+} \exp \left(-\omega B_{0}\right)-B_{-} \exp \left(-\omega A_{0}\right)\right) / \sqrt{2 \sinh \omega}
\end{align*}
$$

form a $\mathrm{SU}_{q}(1,1)$ algebra with commutation relations

$$
\begin{align*}
& {\left[N_{0}, N_{ \pm}\right]= \pm N_{ \pm}} \tag{34}\\
& {\left[N_{-}, N_{+}\right]=\left(\sinh 2 \omega N_{0}\right) / \sinh \omega .}
\end{align*}
$$

In contrast to (15) the q-bose operators in (33) obey the relations with inverted sign of ω :

$$
\begin{align*}
& {\left[A_{-}, A_{+}\right]=\exp \left(\omega A_{0}\right)} \tag{35}\\
& {\left[B_{-}, B_{+}\right]=\exp \left(\omega B_{0}\right) \quad \omega>0 .}
\end{align*}
$$

The representations of both discrete and continuous series of $\operatorname{SU}_{q}(1,1)$ can be obtained from (33) in a similar way.

The author is grateful to Professor Ya Granovskii for helpful discussions.

References

[1] Zachos C 1990 Preprint Argonne ANL-HEP-PR-90-61
[2] Arik M and Coon D D 1975 J. Math. Phys. 16 1776-9
[3] Kuryshkin V V 1980 Ann. Found. L de Broglie 5 111-26
[4] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L983-6
[5] Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581-6
[6] Kulish P P and Damaskinsky E V 1990 J. Phys. A: Math. Gen. 23 L415-9
[7] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics (Reading, MA: AddisonWesley)
[8] Askey R and Wilson J 1979 SIAM J. Math. Anal. 10 1008-16; 1985 Mem. Am. Math. Soc. 54 1-55

