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LETTER TO THE EDITOR

‘Non-classical’ g-oscillator realization of the quantum SU(2)
algebra

A S Zhedanov
Physics Department, Donetsk University, Donetsk 340055, Russia

Received 18 October 1991

Abstract. A new realization of SU,(2} algebra via two independent g-oscillators is found.
In contrast to the ‘classical” Jordan-Schwinger construction the proposed realization yields
SU,(2) generators as linear functions of creation and annihilation g-bose operators. The
functions of canonical basis | j; m) in g-oscillator representation are found. There are no
‘classical’ analogues of this realization—it ‘disappears’ if g - 1.

The SU,(2) (or so-called ‘quantum SU{(2)") algebra is assumed to play an important
role in problems of quantum field theory and statistical physics (for references see
[1]). This algebra is formed by three generators J,, J, , J_, obeying the commutation
relations

[JO; jz] =kd,
[J., J_]1=(sinh 2wJ,)/sinh w.

(1)

In what follows we shall assume that w > 0.
The Casimir operator J? of SU,(2) has the expression

J=J,J_+(cosh 2w(Jy~1/2))/2 sinh® . (2)

The canonical basis of unitary finite-dimensional representation exists ¢;,, defined by
the relations

Jotjm = My,

I fim = :o'm(f’jmwl

it = O 1Y

F24,,. = [(cosh w(2j +1))/2 sinh®  Ji,

where (as for ordinary SU(2) algebra)) |m|=j,2j+1=1,2,...is the dimension of the
representation and

o? = J*—(cosh w(2m —1))/2 sinh’ w.

There is one more important ‘quantum’ algebra—so-called g-oscillator algebra.

(3}

Tha lattaric constructad from the numhber onerator A and n-l’\nen creatinn_ annihil
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operators A, , A_. The commutation relations between these operators are
[Ag, ALl==x A,
[A_, AL ]l=exp(-2wAy) -
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(for w =0 we arrive at the ordinary oscillator algebra). The g-oscillator algebra (4)
(as well as its various modifications) has been considered (and rediscovered) in many
papers [2-6].

The Casimir operator of g-oscillator algebra is

Q=A A +e™h/(1—e7™). (5)
Writing the Casimir in the form
Q=e"/(1-e7*") (6)

where a is arbitrary real parameter, one obtains the following canonical unitary
representation in the basis |n)

Adny=(a+n)|n)
Admy= poln—1)

A= ppni|nt+1) (7)
Qlny=Q(a)in)
n=0,1,2,...
where _
pr=e U (1—e ")/ (1~e72). (8)

The representations (7), being infinite-dimensional, differ one from another by the
value of the Casimir parameter «. For a =0 we have the g-bose algebra defined by
the relation [2, 3, 6)

APAY —gAPV A =1, (9)
For & # 0 the corresponding relation is

AL AL~ g AL AL = g (10)
where

g =exp(—2w). (11)
There are obvious relations between A'” and A

AY' = AP +a

(12)

A =Vg Al

Because g-oscillator algebra seems to be simpler than SU,(2), it is natural to search
for possible g-oscillator realizations of SU,(2). In [4, 5] the g-analogue of Jordan-
Schwinger construction has been proposed. Let A,, A,, A_ and By, B,, B_ be two
independent (i.e. commuting) sets of g-oscillator operators both forming the representa-
tions with zero Casimir parameters a = 8 =0. Then the operators

Jo= (Ao" By)/2
J.=A_B, exp(w(A,+ By—1)/2) (13)
J.=A,B_exp(w(Ao+ By,—~1)/2)
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form a representation of SU,(2). The dimension 2j+ 1 of this representation is defined
by the value j of the operator

j=(A.+By)/2 (14)

commuting with all generators J,, J_, J,.

Formulae (13) yield the g-analogue of Jordan-Schwinger representation for SU,{(2)
[4,5]. For @ =0 we obtain the well-known Jordan-Schwinger realization of angular
momentum via two oscillators [7].

However there exists one more g-oscillator realization of SU,(2) having no classical
analogue (i.e. it exists only for @ # 0). Moreover, in contrast to (13), the new realization
is linear on the creation-annihilation ¢-bose operators,

Let again Ay, A., By, B, be independent g-oscillator operators forming the rep-
resentations of algebra (4) with Casimir parameters « and 8. One can easy verify that
operators

JQ= AO_BO
J_=(A_exp(wBy)— B, explwA,))/v2 sinh w 15
J.=(A, exp(wB;)— B_exp(wA,))/v2 sinh w

form the SU,(2) algebra with commutation relations (1). Note that the realization (15)
does not explicitly depend on the Casimir parameters o and 8. In the classical limit
{w - 0) this realization ‘disappears’.

Let us find the standard eigenstates ;,, {3} for the realization (15). For this it is
sufficient to solve the two equations

Tt = M, (16)
I Wim = Atljm (17)
where
cosh w(2j+1)
/ 2sinh® w (18)

Without loss of generality one can choose m=0, so j=m, m+1,....
The functions 4, may be represented in terms of g-oscillator eigenstates

Yim= L W:;TnJ"AH"B) (19

naa
where |n,), |ng) are eigenstates for A, and By:

Adrnay=(a +ns)lna

By|ng)={(B+ng)ing).
From (16} one obtains the relation

na—ngta-B=m (20)
Let us choose the Casimir parameters to be

a-B=m. (21)
So we obtain

na=ng=0,1,2_.. (22)
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and expanston (19} can be rewritten in the form

b= L WIm)n). (23)
Substituting (23} into (17) one obtains the following recurrent relation for the
coefficients W,

. Wi ta, W, . +bh W =AW {24}
AL Al ] [ | Tt n 1&ev)
where
a,=(1—e**"}/4sinh’ &
w(Zn+1) . 13 {25)
b,=¢e cosh 2ewm/2 sinh” w.
It is convenient to represent W™ in the form
Wit = W{"P,(A;; m).” {26)
For new functions P, we have
and
) P LalP 4+ hD_—-12D (e
Qi1 n 1 T @ni 17 Ty T AgE . LLOf

It is seen from (27), (28) (and from a,=0) that functions P, (A;; m) are n-order
polynomials of argument A;. These polynomials (together with their weight amplitude
W,) are uniquely determined by the three-term recurrent relation (28). To complete
the calculations it is sufficient to note that coefficients a, and b, coincide with those
defining the special class of Askey-Wilson polynomials [8]. Omitting the details of
identification we represent the final result

(W) = exp(2o(m’ - ")) (1 —e ™) (29)

qn+l—2m) (30)

x+2m+1

97,979

P.(x; m)zq"(m+l/2)3q’|( q

where

q = e—2w

x=j—-m=0,1,2,....
+®, is the so-called basic hypergeometric function defined by [8]

a, b,C - = _ kqik(kﬁ’l)jz(a)k(b)k(c)kzk
"D'( d Z)‘Eu‘ D @s(d)s

where (a), =(1—a)(1-ga)...(1—a- g*™") is the Pochhammer g-symbol.

Formulae (29), (30) completely determine the coefficients W4" in expansion (23).
So we have obtained the function 4, in the g-oscillator representation.

Note that for the lowest state j=m one obtains the simple formula (‘Planck
distribution’)

(31)

Uy =v1=¢""" L q""Pn}|n). (32)
=0

It is again seen from (32) that this distribution exists only for 4 # 1 (formally speaking,
the case g1 corresponds to an ‘infinitely increasing temperature’).
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Note, finally, that analogous representations exist also for the SU,(1, 1} algebra.
Indeed, the operators :
No = Ao - Bo
N_=(A_exp(—wB;) - B, exp(—wA,))/v2sinh w (33)
N, ={(A, exp{—wB;) - B_ exp(—wA,)})/v2sinh w
form a SU,(1, 1) algebra with commutation relations
[Ny, N.]=xN,
’ . (34)
[N., N.]=(sinh 2 N,)/sinh w.

In contrast to (15) the g-bose operators in (33) obey the relations with inverted sign
of w:

[A_, A.]=exp(wA,)
[B_, B,] =exp{wB,) w >0,

(35)

The representations of both discrete and continuous series of SU (1, 1) can be
obtained from (33) in a similar way.

The author is grateful to Professor Ya Granovskii for helpful discussions,
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