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LE’ITER TO THE EDITOR 

‘Non-classical’ q-oscillator realization of the quantum SU(2) 
algebra 

A S Zhedanov 
Physics Department. Donetsk University, Donetsk 340055, Russia 

Received 18 October 1991 

Abslrad. A new realization ofSU,(2) algebra via two independent q-oscillators is found. 
In contmt to the ‘classical‘ Jordan-Schwinger construction the proposed realization yields 
SU,(2) generators BE linear functions of creation and annihilation q-bose operators. The 
functions of canonical basis l j ;  m) in  q-oneillator representation arc found. There are no 
‘classical‘ analogues of this realization-it ‘disappears’ if q -P I .  

The SUJ2) (or so-called ‘quantum SU(2)’) algebra is assumed to play an important 
role in problems of quantum field theory and statistical physics (for references see 
[l]). This algebra is formed by three generators Jo, J , ,  J - ,  obeying the commutation 
relations 

[Jo ,  J*l=*J+ 
[J+ ,  J - ]  = (sinh Zwlo)/sinh w 

In what follows we shall assume that w > 0. 
The Casimir operator J’ of SU,(2) has the expression 

.?’= J+J~+(cosh2w(Jo-1/2)) /2sinh2w. 

The canonical basis of unitary finite-dimensional representation exists $,m defined by 
the reiations 

Jo$,,,, = m$,, 

where (as for ordinary SU(2) algebra)) Jml sj, 2j+ 1 = 1,2, .  . . is the dimension of the 
representation and 

m ~ = J 2 ’ ( c o s h o ( 2 m - l ) ) / 2 s i n h 2 w .  

There is one more important ‘quantum’ algebra-so-called q-oscillator algebra. 
and q-bnse creation-anxihl!atiox The !a::e; i; cozs::-c:ed ?:a- :he xn-ber eperE.!er 

operators A+, A-. The commutation relations between these opirators are 

[Ao, A*] = *A* 

[A-, A+]=exp(-2wA0) - (4) 
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(for w = O  we arrive at the ordinary oscillator algebra). The q-oscillator algebra (4) 
(as well as its various modifications) has been considered (and rediscovered) in many 
papers [2-61. 

The Casimir operator of q-oscillator algebra is 

6=A+A..+e-2"Ao/(1-e-2").  ( 5 )  

Writing the Casimir in the form 

Q=e-2""/(]-e-2") (6) 

where ~11 is arbitrary real parameter, one obtains the following canonical unitary 
representation in the basis In) 

where 

(8) 

The representations (7), being infinite-dimensional, differ one from another by the 
value of the Casimir parameter a. For a = 0 we have the q-bose algebra defined by 
the relation [2,3,6] 

(9) 

2 - -*ua 
pw - e ( 1  -e-'"")/(l -e-'"). 

,@)AW + - q ~ ( O J ~ ( 0 )  + -  = 1 

For a # 0 the corresponding relation is 
~ p ) ~ ( e )  - q ~ y ) ~ y ) =  qa + 

where 

q=exp(-Zw). 

There are obvious relations between A'" and A'"' 

~ r )  = (I 

AY)  =@AY', 

Because q-oscillator algebra seems to be simpler than SU,(2), it is natural to search 
for possible q-oscillator realizations of SUJ2). In [4,5] the q-analogue of Jordan- 
Schwinger construc:ion has been proposed. Let A,, A+, A- and Bo, E , ,  E -  be two 
independent (i.e. commuting) sets of q-oscillator operators both forming the representa- 
tions with zero Casimir parameters a = 0 = 0. Then the operators 

Jo = (Ao - B0)/2 

J ~ = A ~ B + e x p ( w ( A , + B o - 1 ) / 2 )  

J+=A+B_exp(w(Afl+Bo-1)/2)  
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form a representation of SUJ2). The dimension 2 j +  1 of this representation is defined 
by the value j of the operator 

j = ( A , + B , ) / 2  (14) 

commuting with all generators J o ,  J - ,  J+. 
Formulae (13) yield the q-analogue of Jordan-Schwinger representation for SU,(2) 

[4,51. For w = 0 we obtain the well-known Jordan-Schwinger realization of angular 
momentum via two oscillators [7]. 

However there exists one more q-oscillator realization of SU,(2) having no classical 
analogue (i.e. it exists only f o r o  # 0). Moreover, in contrast to  (13), the new realization 
is linear on the creation-annihilation q-bose operators. 

Let again A,, A,, Bo, B, be independent q-oscillator operators forming the rep- 
resentations of algebra (4) with Casimir parameters a and p. One can easy verify that 
operators 

J+ = (A+ exp(wB,) - B- exp(wA,))/- 

form the SU,(2) algebra with commutation relations (1). Note that the realization (15) 
does not explicitly depend on the Casimir parameters a and p. In the classical limit 
(w + O )  this realization 'disappears'. 

Let us find the standard eigenstates I/Tj,,, (3) for the realization (IS). For this it is 
sufficient to  solve the two equations 

Jo$jm = mllj, (16) 

J 2 @ .  J" = A . $ .  I I -  (17) 

where 

cosh 0 ( 2 j +  1) 
' 2sinh 'o  ' 

A .  = 

Without loss of generality one can choose m P O ,  so j =  m, m + l , .  . . . 
The functions $jm may be represented in terms of q-oscillator eigenstates 

I/T,,,, = 1 wL:nalnA)lnd (19) 
"*."e 

where InA), In,) are eigenstates for A. and Bo: 
" ,.. \ - I -  I .. \ I _  , 

a 0 1  n4/= Iu  l lAllrgAl 

&Ins)= ( P  + ns)lnB). 

From (16) one obtains the relation 

n A - n B  + a  - p  = m. 

Let us choose the Casimir parameters to be 

a - p  = m. 

So we obtain 

nA= n, = 0 ,1 ,2 . .  . 
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and expansion (19 )  can be rewritten in the form 

$jm= 1 W%)ln). (23) 

Substituting (23) into (17) one obtains the following recurrent relation for the 
coefficients W. 

n = o  

n.;;w";;+n"W"-;+b"W" =Ajw" (24) 
where 

an=(I-e2"")/4sinh2w 

b.=e (25) cosh 2wm/2 sinh2 w. 

It is convenient to represent Wim in the form 

W ( 2 " + l )  

wim= w;'"P.(A,; m).  (26) 
For new functions P. we have 

Po(Aj;m)-l (27) 
and 

n D + n D  + h D - l D  /.7Q\ 

It is seen from (27), (28) (and from a,=O) that functions P. ( A j ;  m )  are n-order 
polynomials of argument A;. These polynomials (together with their weight amplitude 
WO) are uniquely determined by the three-term recurrent relation (28). To complete 
the calculations it is sufficient to note that coefficients a. and b. coincide with those 
defining the special class of  Askey-Wilson polynomials [8]. Omitting the details of 
identification we represent the final result 

""+I' n+l  " " 2  " -1  ""1 "-a;' n. \LOI 

(W{'")2 = exp(2w(m2-j2))(l -e-2-(2i+') ) 

where 
q = e-2- 

x = j - m = 0 , 1 , 2  ,_ . . .  
is the so-called basic hypergeometric function defined by 181 

where (a ) t= ( l -a ) ( l -qa)  . . .  ( 1 - a . q k - ' )  is the Pochhammer q-symbol. 

So we have obtained the function ICjm in the q-oscillator representation. 

distribution') 

Formulae (29). (30) completely determine the coefficients W;'" in expansion (23). 

Note that for the lowest state j = m  one obtains the simple formula ('Planck 

It is again seen from (32) that this distribution exists only for q # 1 (formally speaking, 
the case q + 1 corresponds to an 'infinitely increasing temperature'). 
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Note, finally, that analogous representations exist also for the SU,(l, 1) algebra. 
Indeed, the operators 

No = A, - Eo 

N- = (A- exp(-oB,) - E, e x p ( - w A , , ) ) / m  (33) 

N+ = (A+ exp(-oB,) - E- e x p ( - o A , , ) ) / w  

form a SU,(l, 1) algebra with commutation relations 

In contrast to (15) the q-bose operators in (33) obey the relations with inverted sign 
of 0 :  

The representations of both discrete and continuous series of SU,(I, 1) can be 
obtained from (33) in a similar way. 

T h e  author is grateful to Professor Ya Granovskii for helpful discussions 
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